Constructing

Hamiltonian Circuits

When all nodes have degree of at least $\mathrm{n} / 2$
(Also: an implementation in C++ using Boost) Presented by Alan Hogan @ SUnMaRC, February 2008

Graphs

- A graph is a collection of vertices (or points) and edges (which connect the vertices).

Example Graph

Paths and Circuits

- Paths are series of vertices connected by edges
- A circuit is a closed path (starts \& ends at the same vertex)

Path

Circuit

Hamiltonian Circuits

- A Hamiltonian circuit is a closed path which visits every vertex in the graph exactly one time
- Also called "Hamiltonian Cycles"

Plain Circuit

Hamiltonian

Problem

- General algorithms to find Hamiltonian circuits are slow, running in nonpolynomial time - it is an NP-complete problem
- We can use an efficient algorithm, however, in some cases, thanks to Dirac and Ore...

Dirac's Theorem (1952)

- A simple graph with n vertices $(n>2)$ is Hamiltonian if each vertex has degree $n / 2$ or greater.
- (sufficient but not necessary)

Ore's Theorem (1960)

- Generalization of Dirac's Theorem
- If G is a simple graph with n vertices, where $n \geq 3$, and if for each pair of non-adjacent vertices v and $w, \operatorname{deg}(v)+\operatorname{deg}(w) \geq n$, then G is Hamiltonian

Also in Ore's paper...

- Ore's restatement of Dirac's principle lends itself to an interesting \& useful principle
- For graphs satisfying the pre-requisite condition, an existing almost-complete Hamiltonian circuit with a gap between vertices A and B where there "should" be the final edge can be "repaired."

Using Ore's Algorinthm

Missing edge
I. Find a two vertices C \& D s.t. edges (A, C) and (B,D) exist; (C,D) is in our almost-complete circuit; and D lies between C and A on the partial circuit.
2. Connect vertex A to vertex C
3. Connect vertex B to a vertex D
4. Remove the edge between those two earlier vertices.

Using Ore's Algorinthm

Missing edge
I. Find a two vertices C \& D s.t. edges (A, C) and (B,D) exist; (C,D) is in our almost-complete circuit; and D lies between C and A on the partial circuit.
2. Connect vertex A to vertex C
3. Connect vertex B to a vertex D
4. Remove the edge between those two earlier vertices.

Using Ore's Algorinthm

Missing edge
I. Find a two vertices C \& D s.t. edges (A, C) and (B,D) exist; (C,D) is in our almost-complete circuit; and D lies between C and A on the partial circuit.
2. Connect vertex A to vertex C
3. Connect vertex B to a vertex D
4. Remove the edge between those two earlier vertices.

Using Ore's Algorinthm

Missing edge
I. Find a two vertices C \& D s.t. edges (A, C) and (B,D) exist; (C,D) is in our almost-complete circuit; and D lies between C and A on the partial circuit.
2. Connect vertex A to vertex C
3. Connect vertex B to a vertex D
4. Remove the edge between those two earlier vertices.

Using Ore's Algorinthm

Missing edge
I. Find a two vertices C \& D s.t. edges (A, C) and (B,D) exist; (C,D) is in our almost-complete circuit; and D lies between C and A on the partial circuit.
2. Connect vertex A to vertex C
3. Connect vertex B to a vertex D
4. Remove the edge between those two earlier vertices.

Using Ore's Algorinthm

Repaired: Full circuit
I. Find a two vertices C \& D s.t. edges (A, C) and (B,D) exist; (C,D) is in our almost-complete circuit; and D lies between C and A on the partial circuit.
2. Connect vertex A to vertex C
3. Connect vertex B to a vertex D
4. Remove the edge between those two earlier vertices.

Why does that work?

- We know that at least one pair of such desirable contiguous earlier vertices C and D exist because each vertex has at least half as many edges as there are vertices
- Proof by the pigeonhole principle
- Boxes = potential pairs of vertices C \& $D=n-3$
- Pigeons $=$ edges from A or $B=2(n / 2-I)=n-2$

Worst case

(Edges not connected to A or B and not on the circuit are not depicted)

Worst case

(Edges not connected to A or B and not on the circuit are not depicted)

Worst case

(Edges not connected to A or B and not on the circuit are not depicted)

Repeated Use

- Repeated use of the algorithm suggested by Ore's paper allows us to find a Hamiltonian circuit for any graph in our scope (all vertices have at least n/2 edges)

Repeating the Algorithm

I. Pretend we have a circuit
2. Acknowledge one pretend edge does not really exist
3. Fix that edge. We have a pretend circuit again, but it's closer to true
4. Go back to step 2. Repeat until all edges really exist

Repeating the Algorithm

I. Pretend we have a circuit
2. Acknowledge one pretend edge does not really exist
3. Fix that edge. We have a pretend circuit again, but it's closer to true
4. Go back to step 2. Repeat until all edges really exist

Repeating the Algorithm

I. Pretend we have a circuit
2. Acknowledge one pretend edge does not really exist
3. Fix that edge. We have a pretend circuit again, but it's closer to true
4. Go back to step 2. Repeat until all edges really exist

Repeating the Algorithm

I. Pretend we have a circuit
2. Acknowledge one pretend edge does not really exist
3. Fix that edge. We have a pretend circuit again, but it's closer to true
4. Go back to step 2. Repeat until all edges really exist

Repeating the Algorithm

I. Pretend we have a circuit
2. Acknowledge one pretend edge does not really exist
3. Fix that edge. We have a pretend circuit again, but it's closer to true
4. Go back to step 2. Repeat until all edges really exist

Repeating the Algorithm

I. Pretend we have a circuit
2. Acknowledge one pretend edge does not really exist
3. Fix that edge. We have a pretend circuit again, but it's closer to true
4. Go back to step 2. Repeat until all edges really exist

Repeating the Algorithm

I. Pretend we have a circuit
2. Acknowledge one pretend edge does not really exist
3. Fix that edge. We have a pretend circuit again, but it's closer to true
4. Go back to step 2. Repeat until all edges really exist

Repeating the Algorithm

I. Pretend we have a circuit
2. Acknowledge one pretend edge does not really exist
3. Fix that edge. We have a pretend circuit again, but it's closer to true
4. Go back to step 2. Repeat until all edges really exist

Repeating the Algorithm

I. Pretend we have a circuit
2. Acknowledge one pretend edge does not really exist
3. Fix that edge. We have a pretend circuit again, but it's closer to true
4. Go back to step 2. Repeat until all edges really exist

Repeating the Algorithm

I. Pretend we have a circuit
2. Acknowledge one pretend edge does not really exist
3. Fix that edge. We have a pretend circuit again, but it's closer to true
4. Go back to step 2. Repeat until all edges really exist

Repeating the Algorithm

I. Pretend we have a circuit
2. Acknowledge one pretend edge does not really exist
3. Fix that edge. We have a pretend circuit again, but it's closer to true
4. Go back to step 2. Repeat until all edges really exist

Repeating the Algorithm

I. Pretend we have a circuit
2. Acknowledge one pretend edge does not really exist
3. Fix that edge. We have a pretend circuit again, but it's closer to true
4. Go back to step 2. Repeat until all edges really exist

Repeating the Algorithm

I. Pretend we have a circuit
2. Acknowledge one pretend edge does not really exist
3. Fix that edge. We have a pretend circuit again, but it's closer to true
4. Go back to step 2. Repeat until all edges really exist

Repeating the Algorithm

I. Pretend we have a circuit
2. Acknowledge one pretend edge does not really exist
3. Fix that edge. We have a pretend circuit again, but it's closer to true
4. Go back to step 2. Repeat until all edges really exist

Repeating the Algorithm

I. Pretend we have a circuit
2. Acknowledge one pretend edge does not really exist
3. Fix that edge. We have a pretend circuit again, but it's closer to true
4. Go back to step 2. Repeat until all edges really exist

Implementation

- The algorithm as discussed was slightly modified to use two graphs - the pretend circuit, and the true graph
- Implemented in C++ using the Boost graph library and Xcode
- Command-line only (but a GUI frontend could be constructed)

Thank you.

alanhogan.com/asu/hamiltonian-circuit

Read more about this project, download this presentation, or get a copy of the source code online.

Thank you.

alanhogan.com/asu/hamiltonian-circuit

Read more about this project, download this presentation, or get a copy of the source code online.

