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Constructing 
Hamiltonian Circuits

When all nodes have degree of at least n/2
(Also: an implementation in C++ using Boost)

Presented by Alan Hogan @ SUnMaRC, February 2008
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Graphs

• A graph is a collection of vertices (or 
points) and edges (which connect the 
vertices). 
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Example Graph

Vertex

Edge
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Paths and Circuits

• Paths are series of vertices connected by 
edges

• A circuit is a closed path (starts & ends at 
the same vertex)
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Path Circuit

Start

End

Start

End
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Hamiltonian Circuits

• A Hamiltonian circuit is a closed path 
which visits every vertex in the graph 
exactly one time

• Also called “Hamiltonian Cycles”
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Plain Circuit Hamiltonian

Sunday, February 24, 2008



Problem

• General algorithms to find Hamiltonian 
circuits are slow, running in non-
polynomial time — it is an NP-complete 
problem

• We can use an efficient algorithm, however, 
in some cases, thanks to Dirac and Ore...
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Dirac’s Theorem (1952)

• A simple graph with n vertices (n > 2) is 
Hamiltonian if each vertex has degree n/2 
or greater.

• (sufficient but not necessary)
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Ore’s Theorem (1960)

• Generalization of Dirac’s Theorem

• If G is a simple graph with n vertices, where 
n ≥ 3, and if for each pair of non-adjacent 
vertices v and w, deg(v) + deg(w) ≥ n, then 
G is Hamiltonian
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Also in Ore’s paper...

• Ore’s restatement of Dirac’s principle lends 
itself to an interesting & useful principle

• For graphs satisfying the pre-requisite 
condition, an existing almost-complete 
Hamiltonian circuit with a gap between 
vertices A and B where there “should” be 
the final edge can be “repaired.”
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Using Ore’s Algorinthm

A

B

C

D

Missing edge

1. Find a two vertices C & D 
s.t.  edges (A,C) and (B,D) 
exist; (C,D) is in our 
almost-complete circuit; 
and D lies between C and 
A on the partial circuit.

2. Connect vertex A to 
vertex C

3. Connect vertex B to a 
vertex D 

4. Remove the edge between 
those two earlier vertices. 
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Using Ore’s Algorinthm

A

B

C

D

Repaired: Full circuit
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Why does that work?

• We know that at least one pair of such 
desirable contiguous earlier vertices C and D 
exist because each vertex has at least half as 
many edges as there are vertices 

• Proof by the pigeonhole principle

• Boxes = potential pairs of vertices C & D = n−3

• Pigeons = edges from A or B = 2(n/2−1) = n−2
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A B

Worst case
(Edges not connected to A or B and not 

on the circuit are not depicted)
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A B

Worst case
(Edges not connected to A or B and not 

on the circuit are not depicted)

D C

Sunday, February 24, 2008



A B

Worst case
(Edges not connected to A or B and not 

on the circuit are not depicted)

D C
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Repeated Use

• Repeated use of the algorithm suggested by 
Ore’s paper allows us to find a Hamiltonian 
circuit for any graph in our scope (all 
vertices have at least n/2 edges)
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Repeating the Algorithm

1. Pretend we have a 
circuit

2. Acknowledge one 
pretend edge does not 
really exist

3. Fix that edge. We have a 
pretend circuit again, but 
it’s closer to true

4. Go back to step 2. 
Repeat until all edges 
really exist
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Repeating the Algorithm
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Implementation

• The algorithm as discussed was slightly 
modified to use two graphs – the pretend 
circuit, and the true graph

• Implemented in C++ using the Boost graph 
library and Xcode

• Command-line only (but a GUI frontend 
could be constructed)
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Thank you.
––––––

alanhogan.com/asu/hamiltonian-circuit

Read more about this project,
download this presentation, or 

get a copy of the source code online.
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
Made on a Mac
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