
Sunday, February 24, 2008

Constructing
Hamiltonian Circuits

When all nodes have degree of at least n/2
(Also: an implementation in C++ using Boost)

Presented by Alan Hogan @ SUnMaRC, February 2008

Sunday, February 24, 2008

Graphs

• A graph is a collection of vertices (or
points) and edges (which connect the
vertices).

Sunday, February 24, 2008

Example Graph

Vertex

Edge

Sunday, February 24, 2008

Paths and Circuits

• Paths are series of vertices connected by
edges

• A circuit is a closed path (starts & ends at
the same vertex)

Sunday, February 24, 2008

Path Circuit

Start

End

Start

End

Sunday, February 24, 2008

Hamiltonian Circuits

• A Hamiltonian circuit is a closed path
which visits every vertex in the graph
exactly one time

• Also called “Hamiltonian Cycles”

Sunday, February 24, 2008

Plain Circuit Hamiltonian

Sunday, February 24, 2008

Problem

• General algorithms to find Hamiltonian
circuits are slow, running in non-
polynomial time — it is an NP-complete
problem

• We can use an efficient algorithm, however,
in some cases, thanks to Dirac and Ore...

Sunday, February 24, 2008

Dirac’s Theorem (1952)

• A simple graph with n vertices (n > 2) is
Hamiltonian if each vertex has degree n/2
or greater.

• (sufficient but not necessary)

Sunday, February 24, 2008

Ore’s Theorem (1960)

• Generalization of Dirac’s Theorem

• If G is a simple graph with n vertices, where
n ≥ 3, and if for each pair of non-adjacent
vertices v and w, deg(v) + deg(w) ≥ n, then
G is Hamiltonian

Sunday, February 24, 2008

Also in Ore’s paper...

• Ore’s restatement of Dirac’s principle lends
itself to an interesting & useful principle

• For graphs satisfying the pre-requisite
condition, an existing almost-complete
Hamiltonian circuit with a gap between
vertices A and B where there “should” be
the final edge can be “repaired.”

Sunday, February 24, 2008

Using Ore’s Algorinthm

A

B

C

D

Missing edge

1. Find a two vertices C & D
s.t. edges (A,C) and (B,D)
exist; (C,D) is in our
almost-complete circuit;
and D lies between C and
A on the partial circuit.

2. Connect vertex A to
vertex C

3. Connect vertex B to a
vertex D

4. Remove the edge between
those two earlier vertices.

Sunday, February 24, 2008

Using Ore’s Algorinthm

A

B

C

D

Missing edge

1. Find a two vertices C & D
s.t. edges (A,C) and (B,D)
exist; (C,D) is in our
almost-complete circuit;
and D lies between C and
A on the partial circuit.

2. Connect vertex A to
vertex C

3. Connect vertex B to a
vertex D

4. Remove the edge between
those two earlier vertices.

Sunday, February 24, 2008

Using Ore’s Algorinthm

A

B

C

D

Missing edge

1. Find a two vertices C & D
s.t. edges (A,C) and (B,D)
exist; (C,D) is in our
almost-complete circuit;
and D lies between C and
A on the partial circuit.

2. Connect vertex A to
vertex C

3. Connect vertex B to a
vertex D

4. Remove the edge between
those two earlier vertices.

Sunday, February 24, 2008

Using Ore’s Algorinthm

A

B

C

D

Missing edge

1. Find a two vertices C & D
s.t. edges (A,C) and (B,D)
exist; (C,D) is in our
almost-complete circuit;
and D lies between C and
A on the partial circuit.

2. Connect vertex A to
vertex C

3. Connect vertex B to a
vertex D

4. Remove the edge between
those two earlier vertices.

Sunday, February 24, 2008

Using Ore’s Algorinthm

A

B

C

D

Missing edge

1. Find a two vertices C & D
s.t. edges (A,C) and (B,D)
exist; (C,D) is in our
almost-complete circuit;
and D lies between C and
A on the partial circuit.

2. Connect vertex A to
vertex C

3. Connect vertex B to a
vertex D

4. Remove the edge between
those two earlier vertices.

Sunday, February 24, 2008

Using Ore’s Algorinthm

A

B

C

D

Repaired: Full circuit

1. Find a two vertices C & D
s.t. edges (A,C) and (B,D)
exist; (C,D) is in our
almost-complete circuit;
and D lies between C and
A on the partial circuit.

2. Connect vertex A to
vertex C

3. Connect vertex B to a
vertex D

4. Remove the edge between
those two earlier vertices.

Sunday, February 24, 2008

Why does that work?

• We know that at least one pair of such
desirable contiguous earlier vertices C and D
exist because each vertex has at least half as
many edges as there are vertices

• Proof by the pigeonhole principle

• Boxes = potential pairs of vertices C & D = n−3

• Pigeons = edges from A or B = 2(n/2−1) = n−2

Sunday, February 24, 2008

A B

Worst case
(Edges not connected to A or B and not

on the circuit are not depicted)

Sunday, February 24, 2008

A B

Worst case
(Edges not connected to A or B and not

on the circuit are not depicted)

D C

Sunday, February 24, 2008

A B

Worst case
(Edges not connected to A or B and not

on the circuit are not depicted)

D C

Sunday, February 24, 2008

Repeated Use

• Repeated use of the algorithm suggested by
Ore’s paper allows us to find a Hamiltonian
circuit for any graph in our scope (all
vertices have at least n/2 edges)

Sunday, February 24, 2008

Repeating the Algorithm

1. Pretend we have a
circuit

2. Acknowledge one
pretend edge does not
really exist

3. Fix that edge. We have a
pretend circuit again, but
it’s closer to true

4. Go back to step 2.
Repeat until all edges
really exist

Sunday, February 24, 2008

Repeating the Algorithm

1. Pretend we have a
circuit

2. Acknowledge one
pretend edge does not
really exist

3. Fix that edge. We have a
pretend circuit again, but
it’s closer to true

4. Go back to step 2.
Repeat until all edges
really exist

Sunday, February 24, 2008

Repeating the Algorithm

A

B

1. Pretend we have a
circuit

2. Acknowledge one
pretend edge does not
really exist

3. Fix that edge. We have a
pretend circuit again, but
it’s closer to true

4. Go back to step 2.
Repeat until all edges
really exist

Sunday, February 24, 2008

Repeating the Algorithm

A

B

1. Pretend we have a
circuit

2. Acknowledge one
pretend edge does not
really exist

3. Fix that edge. We have a
pretend circuit again, but
it’s closer to true

4. Go back to step 2.
Repeat until all edges
really exist

Sunday, February 24, 2008

Repeating the Algorithm

A

B

D

C

1. Pretend we have a
circuit

2. Acknowledge one
pretend edge does not
really exist

3. Fix that edge. We have a
pretend circuit again, but
it’s closer to true

4. Go back to step 2.
Repeat until all edges
really exist

Sunday, February 24, 2008

Repeating the Algorithm

A

B

D

C

1. Pretend we have a
circuit

2. Acknowledge one
pretend edge does not
really exist

3. Fix that edge. We have a
pretend circuit again, but
it’s closer to true

4. Go back to step 2.
Repeat until all edges
really exist

Sunday, February 24, 2008

Repeating the Algorithm

A

B

D

C

1. Pretend we have a
circuit

2. Acknowledge one
pretend edge does not
really exist

3. Fix that edge. We have a
pretend circuit again, but
it’s closer to true

4. Go back to step 2.
Repeat until all edges
really exist

Sunday, February 24, 2008

Repeating the Algorithm

1. Pretend we have a
circuit

2. Acknowledge one
pretend edge does not
really exist

3. Fix that edge. We have a
pretend circuit again, but
it’s closer to true

4. Go back to step 2.
Repeat until all edges
really exist

Sunday, February 24, 2008

Repeating the Algorithm

1. Pretend we have a
circuit

2. Acknowledge one
pretend edge does not
really exist

3. Fix that edge. We have a
pretend circuit again, but
it’s closer to true

4. Go back to step 2.
Repeat until all edges
really exist

Sunday, February 24, 2008

Repeating the Algorithm

1. Pretend we have a
circuit

2. Acknowledge one
pretend edge does not
really exist

3. Fix that edge. We have a
pretend circuit again, but
it’s closer to true

4. Go back to step 2.
Repeat until all edges
really exist

Sunday, February 24, 2008

Repeating the Algorithm

A

B

1. Pretend we have a
circuit

2. Acknowledge one
pretend edge does not
really exist

3. Fix that edge. We have a
pretend circuit again, but
it’s closer to true

4. Go back to step 2.
Repeat until all edges
really exist

Sunday, February 24, 2008

Repeating the Algorithm

A

B

D

C 1. Pretend we have a
circuit

2. Acknowledge one
pretend edge does not
really exist

3. Fix that edge. We have a
pretend circuit again, but
it’s closer to true

4. Go back to step 2.
Repeat until all edges
really exist

Sunday, February 24, 2008

Repeating the Algorithm

A

B

D

C 1. Pretend we have a
circuit

2. Acknowledge one
pretend edge does not
really exist

3. Fix that edge. We have a
pretend circuit again, but
it’s closer to true

4. Go back to step 2.
Repeat until all edges
really exist

Sunday, February 24, 2008

Repeating the Algorithm

A

B

D

C 1. Pretend we have a
circuit

2. Acknowledge one
pretend edge does not
really exist

3. Fix that edge. We have a
pretend circuit again, but
it’s closer to true

4. Go back to step 2.
Repeat until all edges
really exist

Sunday, February 24, 2008

Repeating the Algorithm

1. Pretend we have a
circuit

2. Acknowledge one
pretend edge does not
really exist

3. Fix that edge. We have a
pretend circuit again, but
it’s closer to true

4. Go back to step 2.
Repeat until all edges
really exist

Sunday, February 24, 2008

Implementation

• The algorithm as discussed was slightly
modified to use two graphs – the pretend
circuit, and the true graph

• Implemented in C++ using the Boost graph
library and Xcode

• Command-line only (but a GUI frontend
could be constructed)

Sunday, February 24, 2008

Thank you.
––––––

alanhogan.com/asu/hamiltonian-circuit

Read more about this project,
download this presentation, or

get a copy of the source code online.

Sunday, February 24, 2008

Thank you.
––––––

alanhogan.com/asu/hamiltonian-circuit

Read more about this project,
download this presentation, or

get a copy of the source code online.

Made on a Mac

Sunday, February 24, 2008

Sunday, February 24, 2008

